ARTIKEL IN FACHZEITSCHRIFTEN (AUSWAHL)



 

A non-modular affine matroid lattice satisfying Euclid's strong parallel axiom is simple,
Publicationes Mathematicae (Debrecen) 22(1975) 43-46.
 
Radicals in lattices, Acta Sci. Math (Szeged) 38 (1976) 157-164.
 
A unified theory of cyclically generates modular lattices and AC-lattices,
Studia Sci. Math. Hung. 11(1976) 413-429.

Generalized matroid lattices, Coll. Math. Soc. J. Bolyai, vol. 25: Algebraic Methods in Graph
Theory, Szeged (Hungary) (1978) 727-748, North-Holland, Amsterdam - New York 1981.

On derivations in generalized matroid lattices, Acta Sci. Math (Szeged) 44 (1982) 281-286.

Semimodularity in lattices of finite length, Discrete Mathematics 41 (1982) 287-293.

An isomorphism theorem for standard ideals in lattices, Algebra Universalis 19 (1984) 133-134.

A general isomorphism theorem for universal algebras, (mit M. Gebel und J. Lang)
Demonstratio Mathematica 17 (4) (1984) 907-912.  

Geometric exchange properties in lattices of finite length, (mit U. Faigle und G. Richter)
Algebra Universalis 19 (1984) 355-365.

A note on the group-theoretic isomorphism theorems (mit K. Salomaa), Publ. Math. (Debrecen)
33 (1986) 235-237.

Memorial places of Georg Cantor in Halle, The Mathematical  Intelligencer 10 (1988) 48-49.

The impact of Dilworth's work on the Kurosh-Ore theorem, in: The Dilworth Theorems (edited
by K. Bogart, R. Freese, and J. P. S. Kung), Birkhäuser Verlag Basel / Boston 1990, 203-205.

Strongness in semimodular lattices, Discrete Mathematics 80 (1990) 79-88.

Dually atomistic lattices, Discrete Mathematics 93 (1991) 97-100.

Complements in certain algebraic lattices, Arch. Math. 56 (1991) 197-202.

On meet-distributive lattices, Studia Sci. Math. Hung. 27 (1992) 279-286.

On complements in lattices with covering properties, Algebra Universalis 29 (1992) 33-40.

On the direct irreducibility of certain orthomodular lattices, Periodica Math. Hung. 24 (1992) 147-150.

The Stadtgottesacker in Halle, The Mathematical  Intelligencer 15 (1993) 48-49.

A converse to the Kurosh-Ore theorem, Acta Mathematica Hung. 70 (1996) 181-188.

On centrally symmetric graphs, Mathematica Bohemica 121 (1996) 25-28.

On the covering graph of balanced lattices, Discrete Mathematics 156 (1996) 311-316.

Pentagons and hexagons in semimodular lattices, Acta Sci. Math. (Szeged) 64 (1998) 389-395.